1 – Introduction




Abstract




Aging: no one wants to, but everyone does. Many people are scared of aging mostly because they think of ending up in a bed, doing nothing other than staring at the ceiling and depending on other people who have to sacrifice their free time and strength to care for them. Under these circumstances, not only is the quality of life gone, but also the relationship with relatives can suffer because someone might become a burden.


Scared about this fate, the elderly (and disabled) sometimes wish for suicide or euthanasia. Many need help if their independence is affected because of advanced age. Additionally, euthanasia is illegal in most modern countries.





1 Introduction



Aging: no one wants to, but everyone does. Many people are scared of aging mostly because they think of ending up in a bed, doing nothing other than staring at the ceiling and depending on other people who have to sacrifice their free time and strength to care for them. Under these circumstances, not only is the quality of life gone, but also the relationship with relatives can suffer because someone might become a burden.


Scared about this fate, the elderly (and disabled) sometimes wish for suicide or euthanasia. Many need help if their independence is affected because of advanced age. Additionally, euthanasia is illegal in most modern countries.


A new area of research called Ambient (or also Active) Assisted Living (AAL) exists and addresses these concerns. The first ideas in AAL research were introduced in the 1970s, which included technology use from several fields (e.g., robotic solutions). Figure 1.1 shows the first sketches of how such systems could look at that time. Some of these concepts, which were developed and funded by the Japanese Society for the Promotion of Science in 1985, are summarized in [1].





Figure 1.1 The first vision of AAL as developed in Japan 40 years ago[1]. It is a life support system for the elderly. Japan Society for the Promotion of Science. 1985–86.


Source: Thomas Bock

Aging is an unavoidable and natural process. Physicians have investigated whether there is a possibility of slowing down the aging process, but aging is a multifactorial process and cannot easily be manipulated by simple behavioral rules [2]. According to [2], proper nutrition intake, physical activity, and avoidance of obesity and smoking allows for healthy aging and a high quality of life for as long as possible. Antioxidants and caloric restriction promise to positively manipulate the aging process; however, no study has proven any reliable effect. Additionally, there is also a risk of harming the human body by restorative interventions in the aging process, e.g., by caloric restriction [2].


Why do living beings age? According to [2], the aging process is not programmed in the genes of a being, it is more of an evolutionarily successful strategy, which is the outcome of the extrinsic death risk (i.e., the risk of getting killed by accidents or enemies), making it useful to limit the amount of resources for preserving and repairing capabilities.


Sooner or later aging leads to death, and death frees up the bounded biological resources (the different bases, amino acids, proteins, etc.), which supports the development of new life. New life can try to perform better, as explained by Charles Darwin’s theory of evolution by natural selection [3]. While physicians and biologists try to find a method that avoids or at least slows down the aging process, engineers work on technological solutions to maintain the independence of the elderly.


In this volume, current AAL needs and technology are presented to give an outlook on current developments entering the market and research forming the future. This chapter introduces the reader to the background of AAL and its link to robotics.



1.1 Technological Development


This new research field of AAL is therefore a multidisciplinary field connecting researchers from several disciplines (physicians, social researchers, engineers, etc.) to help patients keep their independence. However, aging itself is not the enemy of this research area. Aging leads to multimorbidity [2], which means that the older someone gets, the more fragile the person becomes. Consequently, AAL technology deals with preventing age-related diseases and their secondary diseases or complications (which includes young people) and assisting disabled people, especially regarding age-related diseases. Many wearables and apps have entered the market, mostly using devices like smartphones, which try to support the user in a healthy lifestyle, e.g., apps for weight loss [4], glycosometers, which are add-ons for smartphones [5], etc. Wearables have been used since the first astronauts’ flight to space. For example, in space suits during extra-vehicular activities (EVA), according to [6], plethysmographs (for breath detection, as well as lung analysis), Galvanic Skin Resistance (GSR) sensors (for stress detection, e.g., by sweating), skin temperature sensors, and pulse oximeter sensors (for heart rate and oxygen saturation of the blood) were used to check the health status of the astronauts.


However, the technology has now reached a limit, thus allowing researchers to go a step further; instead of just developing new measurement and intervention devices, apartments and buildings can be equipped with sensors and devices that support the user when needed. The apartments and houses become a kind of assistive robot: omnipresent in the environment, but unobtrusively implemented to avoid the feeling of permanent screening. According to [7], researchers working in the AAL field have, in recent years, developed new technological solutions based on ambient intelligence. Ambient intelligence is aiming to empower new capabilities through a digital environment and at the same time being sensitive and adaptive to a user’s needs. AAL is not only potentially able to prevent, cure, and improve wellness and health conditions of users, but it also improves safety conditions, e.g., by fall detection, emergency alerts, video surveillance systems, etc. [8]. Also, support in activities of daily living (ADL), e.g., by mobility support and automation, belongs to the field of AAL [9]. Furthermore, communication technology belongs to this field too, as the elderly can connect and communicate more easily with friends and relatives [10]. On the other side, mobile and wearable sensors are more focused on health-related sensor technology, e.g., glucometers, blood pressure devices, and cardiac activities [7]. The idea that robots belong to the field of AAL has already been proven by several research groups, e.g., [11], [12], and [13], aimed to assist movement reduction, fetch objects [14], or transfer support e.g., from bed to wheelchair [15]. According to [7], the smart home is one topic belonging to the AAL sector. Here the analysis and fusion of different types of sensor data helps in obtaining and analyzing information to automate several tasks as well as to increase comfort [16]. Following this approach, modern AAL projects consider not only sensors and devices for automation and comfort, but also the fusing of wearables with smart homes. The entire apartment can be automated, resulting in a robotic apartment. This scenario can be seen as the ultimate fusion of smart homes, wearables, and robotics. More details about such projects are described in Chapter 5.



1.2 Social Development


Why has AAL become so important? The importance of AAL is related to demographic changes, which did not start yesterday. Indeed, the societal demographic changes felt today started at the beginning of the nineteenth century with a growing world population [17].


Technological and (especially) medical knowledge was worse in the nineteenth century than to today. By continued improvements in the medical field, many medications (e.g., arsphenamine [18], and later on penicillin) which allowed for curing deadly diseases, e.g., syphilis [19], have been found. Additionally, when compared to the time before the nineteenth century, child mortality also dramatically changed. For example, the composer Leopold Mozart and his wife Constanze Weber were parents of Maria-Anna Mozart and Wolfgang Amadeus Mozart (see Figure 1.2), as well as of five other children who didn’t live beyond 16 years of age. High child mortality was normal. Also, age-related population distribution, as depicted in Figure 1.3, was comparable to a triangle. Families were large and lived together for longer; there was always the possibility that children would take care of their senior parents. Following improved medication, families started to change because normally children are expensive to take care of. Large families became impoverished because of too many children.


Oct 12, 2020 | Posted by in General Engineering | Comments Off on 1 – Introduction
Premium Wordpress Themes by UFO Themes