6 – Plackett Copula




Abstract




Similar to the Archimedean copulas, the non-Archimedean copulas can be classified as one-parameter non-Archimedean bivariate copulas, two-parameter non-Archimedean bivariate copulas, and multivariate (d ≥ 3)d≥3) non-Archimedean copulas. In recent years, successful applications of non-Archimedean copulas, such as meta-elliptical copulas and Plackett copulas, have been reported in hydrology and water resources management. In this chapter, we will focus on Plackett copulas and more specifically bivariate and trivariate Plackett copula.





6 Plackett Copula




6.1 Bivariate Plackett Copula


In this section, we will introduce the definition, parameter estimation, as well as the random variate simulation with the use of bivariate Plackett copulas.



6.1.1 Definition of Bivariate Plackett Copula


As discussed in Chapter 3, the Plackett copula is constructed using the algebraic method. The cross-product ratio θθ, or odds ratio, is a measure of “association” or “dependence” in 2 × 22×2 contingency tables. Here, we label the categories for each variable as “low” and “high” and give four categories in Table 6.1, where a, b, c, and d represent the observed counts in the four categories, respectively. From Table 6.1, the cross-product ratio (θ : θ>0)θ:θ>0) is defined as θ=adbc. Following Palaro and Hotta (2006), the dependence may be explained through θθ as follows:




  1. 1. 0 < θ < 10<θ<1 corresponds to negative dependence, i.e., observations are more concentrated in the “low-high” and “high-low” cells.



  2. 2. θ = 1θ=1 corresponds to independence, each “observed” entry; for example, a is equal to its “expected value” under independence [i.e.,a+ba+ca+b+c+d].



  3. 3. θ>1θ>1 corresponds to positive dependence, i.e., observations are more concentrated in the “low-low” and “high-high” cells.




Table 6.1. Two-by-two contingency table.


































Column variable
Row variable Low (X ≤ xX≤x) High (X>xX>x)
Low (Y ≤ y)Y≤y) a b a+b
High (Y>y)Y>y) c d c+d
a+c b+d a+b+c+d

With the use of the 2 × 22×2 contingency table, Plackett (1965) developed what is now called the Plackett copula for bivariate continuous random variables. Assuming the continuous random variables X and Y with marginals FX and FYFXandFY and the joint distribution function H(xy) = P(X ≤ xY ≤ y)Hxy=PX≤xY≤y, then the “low” and “high” categories for the column and row variables are replaced by events X ≤ x, X>xX≤x,X>x and Y ≤ y, Y>yY≤y,Y>y, respectively. According to the definition of cross-product ratio θ=adbc, it is clear that a, b, c, and d denote the probabilities of P(X ≤ xY ≤ y), P(X>xY ≤ y), P(X ≤ xY>y),PX≤xY≤y,PX>xY≤y,PX≤xY>y, and P(X>xY>y)PX>xY>y, respectively.


Now, based on the bivariate probability relation discussed in Chapter 3, we have the following:



a = P(X ≤ xY ≤ y)
a=PX≤xY≤y
(6.1a)


b = FY(y) − H(xy)
b=FYy−Hxy
(6.1b)


c = FX(x) − H(xy)
c=FXx−Hxy
(6.1c)


d = 1 − FX(x) − FY(y) + H(xy)
d=1−FXx−FYy+Hxy
(6.1d)

Replacing the values of a, b, c, and d, we obtain the expression of parameter θ as follows:


θ=Hxy1−FXx−FYy+HxyFXx−HxyFYy−Hxy(6.1e)

Let u = FX(x)u=FXx and v = FY(y)v=FYy. Equation (6.1e) may be written in the copula form by applying Sklar’s theorem as follows:


θ=Cuv1−u−v+Cuvu−Cuvv−Cuv(6.2)

Solving for C in Equation (6.2), we obtain the Plackett copula:


Cuvθ=1+θ−1u+v−1+θ−1u+v2−4θθ−1uv2θ−1;θ>0&θ≠1(6.3a)



C(uvθ) = uv; θ = 1
Cuvθ=uv;θ=1
(6.3b)

Taking the partial derivatives with respect to u and v, its copula density function can be written as follows:


cuvθ=∂2Cuvθ∂u∂v=θ1+θ−1u+v−2uv1+θ−1u+v2−4θθ−1uv1.5(6.4)

Taking the partial derivative of equation (6.3a) with respect to u or v, the conditional probability distributions can be obtained as follows:


CV≤vU=u=PY≤yX=x=∂Cuvθ∂u=12+−1+u+v−uθ+vθ21+θ−1u+v2−4θθ−1uv(6.5)

CU≤uV=v=PX≤xY=y=∂Cuvθ∂v=12+−1+u+v+uθ−vθ21+θ−1u+v2−4θθ−1uv(6.6)



Example 6.1 Graph the Plackett copula function and its density function with θ = 20, θ = 1, and θ = 0.5θ=20,θ=1,andθ=0.5.


Solution: Using Equations (6.3) and (6.4), we can graph the Plackett copula function and its density function in Figure 6.1 using u, v ∈ [0, 1]u,v∈01. From the copula density function plots with different parameters in Figure 6.1, it is seen that (i) the density is higher if both u and v take on smaller or bigger values at the same time for θ = 20θ=20, i.e., high follows high and low follows low as the representation of positive dependence; (ii) the density is constant, i.e., 1, if θ = 1θ=1 for the independent random variables; and (iii) the negative dependence is observed from the density function plot for θ = 0.5θ=0.5, in this case, smaller u and bigger v reach higher density and vice versa.





Figure 6.1 Plackett copula function and its density function plot for θ = 20, θ = 1 and θ = 0.5θ=20,θ=1andθ=0.5.



6.1.2 Simulation of Bivariate Plackett Copula


Following the Rosenblatt transform (Rosenblatt, 1952), the random variable can be simulated as follows:




  1. 1. Simulate two independent random variables (w1w2)w1w2 from the uniform distribution U(0, 1)U01.



  2. 2. Set u = w1u=w1.



  3. 3. Using Equation (6.5a) and set w2 = C(vu)w2=Cvu, i.e.,


    w2=∂Cuvθ∂u=12+−1+u+v−uθ+vθ21+θ−1u+v2−4θθ−1uv(6.7)


After some algebraic manipulation of Equation (6.7), vv can be solved as follows:


v=c−1−2w2d2b(6.8)

where



b = θ + S(θ − 1)2; c = 2S(2 + 1 − u) + θ(1 − 2S); d = θ0.5(θ + 4Su(1 − u)(1 − θ)2)0.5S = w2(1 − w2).
b=θ+Sθ−12;c=2Suθ2+1−u+θ1−2S;d=θ0.5θ+4Su1−u1−θ20.5S=w21−w2.



Example 6.2 Generate the random variables from the Plackett copula function.


To generate the variables, use the following information:




  1. 1. Simulate Plackett random variables from the uniformly distributed independent random variables w1 = 0.1645w1=0.1645, w2 = 0.9629w2=0.9629, and θ = 50θ=50.



  2. 2. Given θ = 50θ=50, θ = 2.5θ=2.5, and θ = 0.1θ=0.1, graph the the random variables generated from the Plackett copula with a sample size of 100.


Solution: We can use the procedure discussed in Section 6.1.2 to generate the random variables from Plackett copula:




  1. 1. w1 = 0.1645w1=0.1645, w2 = 0.9629w2=0.9629, and θ = 50θ=50.


    Set u = w1 = 0.1645u=w1=0.1645. We may then compute the random variate vv using w2 = C(vU = uθ)w2=CvU=uθ.


    Solving Equation (6.8), we have the following:



    S = 0.0357; b = 135.7723; c = 75.8700; d = 69.6972
    S=0.0357;b=135.7723;c=75.8700;d=69.6972.
    Then we have the following:
    v=c−1−2w2d2b=75.8700−1−20.962969.69722135.7723=0.5170


    Thus, the generated random variables are (uv) = (0.1645, 0.5170)uv=0.16450.5170.



  2. 2. Set θ = 50θ=50, θ = 2.5θ=2.5 and θ = 0.1θ=0.1 with a sample size of 100.


    Using the same procedure as in step 1, we graph the simulated random variables with a sample size of 100 in Figure 6.2. Again, Figure 6.2 clearly shows that (i) the random variables generated are positively dependent with θ = 50θ=50; (ii) the random variables generated are negatively dependent with θ = 0.1θ=0.1; and (iii) the random variables generated are more scattered within [0, 1]2 that are near independent when θ = 2.5θ=2.5.





Figure 6.2 Scatter plot of simulated random variables from the Plackett copula.



6.1.3 Parameter Estimation for Bivariate Plackett Copulas


As discussed in Section 3.6, the full ML, IFM, and semiparametric (pseudo-ML) methods may be applied to estimate the parameter numerically for the Plackett copula function. Here, without further discussion, we will give one example to illustrate the procedure of parameter estimation.




Example 6.3 Using the random variables (Table 6.2) and assuming (a) random variables X and Y are sampled from the normal distribution and gamma distribution, respectively, and (b) the joint distribution may be modeled using Plackett copula, estimate the parameters using full ML, IFM, and semiparametric methods.




Table 6.2. Sample data for Example 6.3.

































































































































































































No. X Y No. X Y
1 11.276 5.049 26 12.793 12.942
2 19.570 12.015 27 16.772 4.140
3 10.864 3.691 28 12.215 4.522
4 14.517 9.233 29 24.909 7.689
5 17.512 6.862 30 17.580 12.331
6 14.312 5.343 31 17.200 7.060
7 17.785 12.689 32 10.621 5.583
8 9.457 8.182 33 10.310 19.026
9 13.290 8.531 34 8.957 3.648
10 15.470 31.129 35 18.735 7.534
11 18.392 20.848 36 11.536 7.519
12 9.411 8.567 37 16.264 10.727
13 18.883 15.874 38 21.382 21.947
14 11.749 12.142 39 19.153 11.813
15 14.173 10.224 40 17.355 7.988
16 14.044 6.223 41 17.877 12.159
17 13.032 7.594 42 14.799 9.622
18 18.374 14.827 43 11.457 11.147
19 17.979 14.283 44 18.601 14.626
20 7.656 4.639 45 11.636 4.732
21 14.642 10.039 46 11.427 6.263
22 19.871 16.856 47 15.067 11.378
23 7.769 17.575 48 16.328 14.778
24 12.870 7.763 49 21.471 29.678
25 14.119 6.964 50 15.327 9.639

Solution: With the assumption of X following the Gumbel distribution (Equation (2.10)) and Y following the gamma distribution (Equation (2.8)), applying MLE, we can initially estimate the parameters of random variables X and Y as follows:




  • Random variable X: μX = 14.9358; σX = 3.8484μX=14.9358;σX=3.8484.



  • Random variable Y: αY = 4.0031; βY = 0.3668αY=4.0031;βY=0.3668.


In addition, using Equation (3.72), we can compute the sample Kendall correlation coefficient as τn = 0.3690τn=0.3690.




  1. 1. Full ML Method:


    As discussed in Section 3.6.1, we will need to estimate the parameters of marginal distributions and copula function simultaneously with the full log-likelihood function given as follows:


    LL=∑ilncplackett(FXNormalxiμXσXFYGammayiαYβYθ+∑ilnfXNormalxiμXσX+∑ilnfYGammayiαYβY


    Using the parameters initially estimated for marginal distributions and assuming the initial estimate of the Plackett copula parameter θ = 10θ=10, we can use optimization toolbox in MATLAB to estimate the full set of parameters. The fitted marginal distribution is listed in Table 6.3 with the estimated parameters listed in Table 6.4.



  2. 2. IFM Method:


    As discussed in Section 3.6.2, the parameters of marginal distributions and copulas are estimated separately with the use of IFM method. We will first compute the cumulative probability using the parameters initially estimated for the marginal distributions listed in Table 6.3. Then we will estimate the parameter of the Plackett copula using the ML method (the optimization toolbox in MATLAB) and the computed cumulative probabilities as random variates as follows:


    LL=∑ilncplackettF̂Xxiμ̂Xσ̂XF̂Yyiα̂Yβ̂Yθ


    The estimated copula parameter is listed in Table 6.4.



  3. 3. Semiparametric Method:


    As discussed in Section 3.6.3, the semiparametric method is also called the pseudo-ML method. The marginal distributions are estimated nonparametrically using the Weibull plotting-position formula (Equation (3.92)) as listed in Table 6.3. Now with the use of the probability estimated nonparametrically, the pseudo-log-likelihood function can be written as follows:


    LL=∑ilncplackettF̂nxiF̂nyiθ


    The estimated parameter is again estimated using the optimization toolbox in MATLAB and listed in Table 6.4. From Table 6.4, it is seen that there is minimal difference in regard to the parameters of the marginal distributions estimated separately from the copula using the IFM method and those estimated simultaneously using the full ML method. Figure 6.3 further indicates this similarity through the univariate probability density comparison. Figure 6.4 compares the observed variates with the simulated variates from the fitted copula function. Figure 6.4 shows that the performances are very similar for the copulas with parameters estimated using three different techniques.




Table 6.3. Cumulative probability computed using the fitted normal and gamma distributions and Weibull probability plotting-position formula.















































































































































































































































































































































































































































































X FMLE IFM Empirical Y FMLE IFM Empirical
19.570 0.871 0.882 0.900 12.015 0.638 0.633 0.640
10.864 0.129 0.141 0.160 3.691 0.047 0.045 0.040
14.517 0.427 0.449 0.460 9.233 0.434 0.428 0.460
17.512 0.724 0.742 0.680 6.862 0.242 0.237 0.220
14.312 0.406 0.428 0.440 5.343 0.132 0.129 0.140
17.785 0.747 0.764 0.720 12.689 0.680 0.675 0.720
9.457 0.067 0.075 0.100 8.182 0.348 0.343 0.400
13.290 0.308 0.328 0.360 8.531 0.377 0.371 0.420
15.470 0.526 0.548 0.560 31.129 0.996 0.996 0.980
18.392 0.795 0.810 0.800 20.848 0.946 0.944 0.920
9.411 0.065 0.073 0.080 8.567 0.380 0.374 0.440
18.883 0.829 0.843 0.860 15.874 0.830 0.827 0.840
11.749 0.183 0.199 0.260 12.142 0.646 0.641 0.660
14.173 0.392 0.414 0.420 10.224 0.512 0.506 0.540
14.044 0.380 0.401 0.380 6.223 0.193 0.189 0.180
13.032 0.284 0.304 0.340 7.594 0.300 0.295 0.320
18.374 0.794 0.809 0.780 14.827 0.789 0.785 0.820
17.979 0.763 0.780 0.760 14.283 0.764 0.760 0.760
7.656 0.025 0.028 0.020 4.639 0.091 0.088 0.100
14.642 0.440 0.462 0.480 10.039 0.498 0.492 0.520
19.871 0.887 0.897 0.920 16.856 0.863 0.860 0.860
7.769 0.026 0.030 0.040 17.575 0.883 0.881 0.880
12.870 0.270 0.289 0.320 7.763 0.314 0.309 0.360
14.119 0.387 0.409 0.400 6.964 0.250 0.245 0.240
12.793 0.264 0.282 0.300 12.942 0.694 0.690 0.740
16.772 0.656 0.676 0.620 4.140 0.066 0.064 0.060
12.215 0.217 0.234 0.280 4.522 0.085 0.082 0.080
24.909 0.994 0.995 0.980 7.689 0.308 0.303 0.340
17.580 0.730 0.748 0.700 12.331 0.658 0.653 0.700
17.200 0.696 0.715 0.640 7.060 0.257 0.253 0.260
10.621 0.116 0.127 0.140 5.583 0.148 0.145 0.160
10.310 0.101 0.111 0.120 19.026 0.916 0.914 0.900
8.957 0.052 0.058 0.060 3.648 0.045 0.044 0.020
18.735 0.819 0.833 0.840 7.534 0.295 0.290 0.300
11.536 0.169 0.184 0.220 7.519 0.294 0.289 0.280
16.264 0.607 0.628 0.580 10.727 0.549 0.544 0.560
21.382 0.945 0.951 0.940 21.947 0.959 0.958 0.940
19.153 0.847 0.859 0.880 11.813 0.625 0.620 0.620
17.355 0.710 0.729 0.660 7.988 0.332 0.327 0.380
17.877 0.755 0.772 0.740 12.159 0.647 0.642 0.680
14.799 0.456 0.478 0.500 9.622 0.465 0.459 0.480
11.457 0.164 0.178 0.200 11.147 0.579 0.574 0.580
18.601 0.810 0.824 0.820 14.626 0.780 0.776 0.780
11.636 0.175 0.191 0.240 4.732 0.096 0.093 0.120
11.427 0.162 0.176 0.180 6.263 0.196 0.192 0.200
15.067 0.484 0.506 0.520 11.378 0.596 0.590 0.600
16.328 0.613 0.634 0.600 14.778 0.787 0.783 0.800
21.471 0.948 0.953 0.960 29.678 0.995 0.994 0.960
15.327 0.511 0.533 0.540 9.639 0.466 0.461 0.500



Table 6.4. Estimated parameters using the preceding three methods.






































Method Univariate Copula
X~normal Y~Gamma θθ LL
Full ML (15.224, 3.846) (4.039, 0.369) 7.500 –275.327
IFM (15.011, 3.851) (4.069, 0.369) 7.167 8.106
Semiparametric 7.759 8.464




Figure 6.3 Comparison of frequency and the fitted probability distributions using IFM and Full MLE.





Figure 6.4 Comparison of observations with simulated random variables with three estimation methods.




Example 6.4 Using the sample data and the parameters estimated with the IFM method in Example 6.3, compute the joint return period and conditional return period of




T(X>19 ∩ Y>21), T(X>19| Y>21), T(X>19| Y = 21)
TX>19∩Y>21,TX>19Y>21,TX>19Y=21.


Solution: Applying the parameters estimated for the marginal distributions listed in Table 6.4 for the IFM method, we have



FX(X ≤ 19; μ = 15.011, σ = 3.852)≈0.850 (Normal distribution)
FXX≤19μ=15.011σ=3.852≈0.850(Normaldistribution)


FY(Y ≤ 21; α = 4.069, β = 2.712)≈0.946 (Gamma distribution)
FYY≤21α=4.069β=2.712≈0.946(Gammadistribution)



  1. i.  T(X>19 ∩ Y>21)TX>19∩Y>21


    In this case, we are evaluating the recurrence interval if both X and Y exceed the value given in the preceding. Applying Equation (3.127) for the “and” case, we have the following:


    F(X>19  ∩​  Y>21)=1−FX(X≤19)−FY(Y≤21)+F(X≤19,Y≤21)=1−FX(X≤19)−FY(Y≤21)+Cplackett(FX(X≤19),FY(Y≤21);θ)=1−0.850−0.946+Cplackett(0.850,0.946;7.167)=1−0.850−0.946+0.824=0.028

    TX>19∩Y>21=1FX>19∩Y>21=10.028=36.10time units



  2. ii. T(X>19| Y>21)TX>19Y>21


    In this case, we are evaluating the recurrence interval of X > 19 under the condition of Y > 21:


    F(X>19|Y>21)=F(X>19∩​Y>21)F(Y>21)=1−FX(X≤19)−FY(Y≤21)+Cplackett(FX(X≤19),FY(Y≤21);θ)1−F(Y≤21)=1−0.850−0.946+0.8241−0.946=0.0280.054=0.516


    Applying Equation (2.91), we have the following:


    TX>19Y>21=11−FYy≤2111−FXx≤19−FYY≤21+CplackettFXFYθ=10.053710.0277≈672time units



  3. iii. T(X>19| Y = 21)TX>19Y=21


In this case, we are evaluating the recurrence interval of X > 19 under the condition that Y is exactly equal to 21:


F(X>19|Y=21)=1−F(X≤19|Y=21)=1−∂C(FX(X≤19),FY(Y≤21);θ)∂FY(Y≤21)=1−0.528=0.472T(X>19|Y=21)=1F(X>19|Y=21)=10.472≈2.12(time units)

Comparing the joint return period with the two conditional return periods we calculated, it is seen that the recurrence interval is longest for the conditional return period of (X>19| Y>21).X>19Y>21.



6.2 Trivariate Plackett Copula


In this section, we will focus on the trivariate Plackett copula, including its definition, the derivation of trivariate Plackett copula density, and a brief introduction of the parameter estimation method. Given the complexity of parameter estimation for the trivariate Plackett copula and the simplicity of other multivariate copula approaches, we will not further discuss the simulation as well as the formal goodness-of-fit measure in detail.



6.2.1 Definition of Cross-Product Ratio for the Trivariate Plackett Copula


For the given (u, v, wu,v,w), there are three compatible bivariate copulas: CUV, CVWCUV,CVW, and CUWCUW. Analogous to the bivariate case, the trivariate constant cross-product ratio θUVWθUVW can be defined following Kao and Govindaraju (2008), Song and Singh (2010) as


θUVW=P000P011P101P110P111P100P010P001(6.9)

where


P000=CUVWuvwP100=CVWvw−CUVWuvwP010=CUWuw−CUVWuvwP001=CUVuv−CUVWuvwP110=w−CUVuw−CVWvw+CUVWuvwP101=v−CUVuv−CVWvw+CUVWuvwP011=u−CUVuv−CVWuw+CUVWuvwP111=1−u−v−w+CUVuv+CVWvw+CUWuw−CUVWuvw(6.10)

Here CUV, CVWCUV,CVW, and CUWCUW are bivariate Plackett copulas with dependence parameters θUV, θVWθUV,θVW, and θUWθUW, for the given θUVWθUVW. Denoting z = CUVW(uvw)z=CUVWuvw, one can compute CUVW(uvw)CUVWuvw as follows:



θUVW(a1 − z)(a2 − z)(a3 − z)(a4 − z) − z(z − b1)(z − b2)(z − b3) = 0
θUVWa1−za2−za3−za4−z−zz−b1z−b2z−b3=0
(6.11)

where


a1=CVWvw,a2=CUWuw,a3=CUVuva4=1−u−v−w+CUVuv+CVWvw+CUWuwb1=CUWuw+CVWvw−wb2=CUVuv+CVWvw−vb3=CUWuw+CUVuv−u(6.12)

For the given θUV, θVW, θUWθUV,θVW,θUW, and θUVWθUVW, the corresponding trivariate Plackett copula may be obtained from Equations (6.11) and (6.12). For CUVW(uvw)CUVWuvw to be a valid three-copula, the following conditions needs to be satisfied:




  1. 1. Since each component in Equation (6.11) is a probability measure, we have the following:



    CUVW(uvw) ∈ [ba], b =  max (0, b1b2b3); a =  min (a1a2a3a4)
    CUVWuvw∈ba,b=max0b1b2b3;a=mina1a2a3a4
    (6.13)



  2. 2. Equation (6.13) is the Fréchet–Hoeffding bounds for trivairate joint distributions with the known bivariate joint distributions (Joe, 1997).



  3. 3. As discussed in Section 3.1.2 of Chapter 3, Equations (3.23)(3.26) need to be satisfied.



  4. 4. The copula density is CUVWuvw=∂3CUVWuvw∂u∂v∂w≥0. Following Kao and Govidaraju (2008), the derivation of the density function will be discussed in Section 6.2.2.


With the fulfillment of the preceding four conditions, for the given cross-product ratio parameters θUV, θVW, θUWθUV,θVW,θUW, and θUVWθUVW, z = CUVW(uvw)z=CUVWuvw may be computed numerically with the following steps:




  1. 1. Compute CUV, CVW, and CUW using Equation (6.3).



  2. 2. To compute CUVWCUVW, Equation (5.11) can be rewritten as follows:


    θUVW−1z4+−θUVWa1+a2+a3+a4+(b1+b2+b3]2+θUVWa1a2+a1+a2a3+a4+a3a4−b1b2+b3b1+b2z2+−θUVWa1a2a3+a4+a3a4a1+a2+b1b2b3z+θUVWa1a2a3a4=0(6.14)
    Let f(z) represent the left side of Equation (6.14). We may use Newton’s iterative method to compute z numerically as follows:
    zn+1=zn−fznf’zn(6.15)
    where f(z)f′z is the first derivative of f(z)fz with respect to z; znzn and zn + 1zn+1 are the nth and (n+1)th iteratively computed values of z.



6.2.2 Derivation of Density Function of the Trivariate Plackett Copula


Following Kao and Govindaraju (2008), the density function of trivariate Plackett copula may be derived in the following manner:




  1. 1. Solve CUVWCUVW using given parameter θUVWθUVW and known bivariate copulas from Equation (6.11) or equivalently Equation (6.14).



  2. 2. Compute first-order derivatives of ∂CUV∂u,∂CUV∂v,∂CUW∂u,∂CUW∂w,∂CVW∂v, and ∂CVW∂w from the corresponding known bivariate copulas. Similar to the vine copula discussed in Chapter 4, these bivariate copulas are not required to belong to the Plackett copula family, and each may belong to a different copula family.



  3. 3. Compute the first-order derivatives of P000, P010, P100, P011, P110, P101, P011P000,P010,P100,P011,P110,P101,P011, and P111P111 with respect to u, v, w, respectively, as follows:


    ∂P000∂u=−∂P100∂u=∂CUVW∂u∂P010∂u=−∂P110∂u=−∂CUVW∂u+∂CUW∂u∂P001∂u=−∂P101∂u=−∂CUVW∂u+∂CUV∂u∂P011∂u=−∂P111∂u=∂CUVW∂u−∂CUV∂u−∂CUW∂u+1(6.16)

    ∂P000∂v=−∂P010∂v=∂CUVW∂v∂P100∂v=−∂P110∂v=−∂CUVW∂v+∂CVW∂v∂P001∂v=−∂P011∂v=−∂CUVW∂v+∂CUV∂v∂P101∂v=−∂P111∂v=∂CUVW∂v−∂CUV∂v−∂CVW∂v+1(6.17)

    ∂P000∂w=−∂P001∂w=∂CUVW∂w∂P100∂w=−∂P101∂w=−∂CUVW∂w+∂CVW∂w∂P010∂w=−∂P011∂w=−∂CUVW∂w+∂CUW∂w∂P110∂w=−∂P111∂w=∂CUVW∂w−∂CUW∂w−∂CVW∂w+1(6.18)



  4. 4. Compute ∂CUVW∂u,∂CUVW∂v,∂CUVW∂w as follows:


    ∂P000∂uP011P101P110+P000∂P011∂uP101P110+P000P011∂P101∂uP110+P000P011P101∂P110∂u–θUVW(∂P111∂uP100P010P001+P111∂P100∂uP010P001+P111P100∂P010∂uP001+P111P110P101∂P110∂u)=0(6.19)

    ∂P000∂vP011P101P110+P000∂P011∂vP101P110+P000P011∂P101∂vP110+P000P011P101∂P110∂v–θUVW(∂P111∂vP100P010P001+P111∂P100∂vP010P001+P111P100∂P010∂vP001+P111P110P101∂P110∂v)=0(6.20)

    ∂P000∂wP011P101P110+P000∂P011∂wP101P110+P000P011∂P101∂wP110+P000P011P101∂P110∂w–θUVW(∂P111∂wP100P010P001+P111∂P100∂wP010P001+P111P100∂P010∂wP001+P111P110P101∂P110∂w)=0(6.21)



  5. 5. Compute the bivariate density function of cUV, cVW, cUWcUV,cVW,cUW.



  6. 6. Compute the second-order derivative of P000, P010, P100, P011, P110, P101, P011P000,P010,P100,P011,P110,P101,P011, and P111P111 with respect to u, v, w, respectively, as follows:


    ∂2P000∂u∂v=−∂2P100∂u∂v=−∂2P010∂u∂v=∂2P110∂u∂v=∂2CUVW∂u∂v∂2P001∂u∂v=−∂2P101∂u∂v=−∂2P011∂u∂v=∂2P111∂u∂v=−∂2CUVW∂u∂v+∂2CUV∂u∂v(6.22)

    ∂2P000∂u∂w=−∂2P100∂u∂w=−∂2P001∂u∂w=∂2P101∂u∂w=∂2CUVW∂u∂w∂2P010∂u∂w=−∂2P110∂u∂w=−∂2P011∂u∂w=∂2P111∂u∂v=−∂2CUVW∂u∂w+∂2CUW∂u∂w(6.23)

    ∂2P000∂v∂w=−∂2P010∂v∂w=−∂2P001∂v∂w=∂2P011∂v∂w=∂2CUVW∂v∂w∂2P100∂v∂w=−∂2P110∂v∂w=−∂2P101∂v∂w=∂2P111∂v∂w=−∂2CUVW∂v∂w+∂2CVW∂v∂w(6.24)



  7. 7. Compute ∂2CUVW∂u∂v,∂2CUVW∂v∂w,∂2CUVW∂u∂w. As an example, ∂2CUVW∂u∂v may be computed by applying ∂∂v to Equation (6.19) as follows:


    ∂2P000∂u∂vP011P101P110+∂P000∂u∂P011∂vP101P110+∂P000∂uP011∂P101∂vP110+∂P000∂vP011P101∂P110∂v+∂P000∂v∂P011∂uP101P110+P000∂2P011∂u∂vP101P110+P000∂P011∂u∂P101∂vP110+P000∂P011∂uP101∂P110∂v+∂P000∂vP011∂P101∂uP110+P000∂P011∂v∂P101∂uP110+P000P011∂2P101∂u∂vP110+P000P011P101∂u∂P110∂v+∂P000∂vP011P101∂P110∂u+P000∂P011∂vP101∂P110∂u+P000P011∂P101∂v∂P110∂u+P000P011P101∂2P110∂u∂v−θUVW(∂2P111∂u∂vP100P010P001+∂P111∂u∂P100∂vP010P001+∂P111∂uP100∂P010∂vP001+∂P111∂uP100P010∂P001∂v+∂P111∂v∂P100∂uP010P001+P111∂2P100∂u∂vP010P001+P111∂P100∂u∂P010∂vP001+P111∂P100∂uP010∂P001∂v+∂P111∂vP100∂P010∂uP001+P111∂P100∂v∂P010∂uP001+P111P100∂2P010∂u∂vP001+P111P100∂P010∂u∂P001∂v+∂P111∂vP100P010∂P001∂u+P111∂P100∂vP010∂P001∂u+P111P100∂P010∂v∂P001∂u+P111P100P010∂2P001∂u∂v)(6.25)


    Similarly, applying ∂∂w,∂∂u, we can obtain ∂2CUVW∂v∂w,∂2CUVW∂u∂w from Equations (6.20) and (6.21), respectively.



  8. 8. Compute the probability density function ∂3CUVW∂u∂v∂w for the trivariate Plackett copula.


    Applying ∂∂w to Equation (6.22), we have the following:


    ∂3P000∂u∂v∂w=−∂3P100∂u∂v∂w=−∂3P010∂u∂v∂w=∂3P110∂u∂v∂w=∂3CUVW∂u∂v∂w∂3P001∂u∂v∂w=−∂3P101∂u∂v∂w=−∂3P011∂u∂v∂w=∂3P111∂u∂v∂w=−∂3CUVW∂u∂v∂w(6.26)


    Applying ∂∂w to Equation (6.25), we obtain a new third-order derivative equation (we omit the derivative here). Substituting Equation (6.26) into the new equation derived for the third-order derivative, we have the density function as a function of P000, P011, P101, P110, P111, P010, P010, P001P000,P011,P101,P110,P111,P010,P010,P001.




Example 6.5 Express the PDF of trivariate Plackette copula with the following information:θUVW = 20; θUV = 15; θUW = 1.3; θVW = 1.4; u = 0.5; v = 0.975; w = 0.975θUVW=20;θUV=15;θUW=1.3;θVW=1.4;u=0.5;v=0.975;w=0.975


Solution: Applying the equations derived for the trivariate Plackett copula, we can compute the trivariate Plackett copula density function by following these procedure and steps:




  1. 1. Compute the bivariate Plackett copula for the paired variables with Equation (6.3); using bivariate variable (uv)uv as an example, we have the following:


    a3=CUV=CUV(0.5,0.975;15)        =[1+(15−1)(0.5+0.975)]−[1+(15−1)(0.5+0.975)]2−4(15)(15−1)(0.5)(0.975)2(15−1)=0.498


    Similarly, we have the following:



    a2 = CUW = CUW(0.5, 0.975; 1.3) = 0.489
    a2=CUW=CUW0.50.9751.3=0.489


    a1 = CVW = CVW(0.975, 0.975; 1.4) = 0.951
    a1=CVW=CVW0.9750.9751.4=0.951



  2. 2. Compute the trivariate Plackett copula value using Equation (6.14), and solve it numerically as follows: CUVW(0.5, 0.975, 0.975; [15, 1.4, 1.3, 20]) = 0.488CUVW0.50.9750.975151.41.320=0.488


    where the remaining asa′s and bsb′s needed in Equation (6.12) are computed as follows:



    a4 = 1 − 0.5 − 0.975 − 0.975 + 0.498 + 0.589 + 0.951 = 0.488
    a4=1−0.5−0.975−0.975+0.498+0.589+0.951=0.488


    b1 = 0.489 + 0.951 − 0.975 = 0.465
    b1=0.489+0.951−0.975=0.465


    b2 = 0.498 + 0.951 − 0.975 = 0.474
    b2=0.498+0.951−0.975=0.474


    b3 = 0.498 + 0.489 − 0.5 = 0.487
    b3=0.498+0.489−0.5=0.487



  3. 3. Compute the derivatives needed to compute the trivariate Plackett density:



    P000 = CUVW = 0.488, P100 = CVW − CUVW = 0.463,
    P000=CUVW=0.488,P100=CVW−CUVW=0.463,


    P010 = CUW − CUVW = 7.903 × 10−4,  P001 = CUV − CUVW = 0.0074,
    P010=CUW−CUVW=7.903×10−4,P001=CUV−CUVW=0.0074,


    P110 = w − CUW − CVW + CUVW =  − 0.0234,  P101 = v − CUV − CVW + CUVW = 0.017
    P110=w−CUW−CVW+CUVW=−0.0234,P101=v−CUV−CVW+CUVW=0.017


    P011 = u − CUV − CUW + CUVW = 0.004
    P011=u−CUV−CUW+CUVW=0.004


    P111 = 1 − u − v − w + CUV + CVW + CUW − CUVW =  − 0.003
    P111=1−u−v−w+CUV+CVW+CUW−CUVW=−0.003


    The rest computation will need to apply the numerical method (i.e., Newton’s method). Here we will only lists the final results:


    ∂2CUV∂u∂v=0.594;∂2CUW∂u∂w=0.985;∂2CVW∂v∂w=1.348

    ∂P000∂u=0.015;∂P111∂v=0.697;∂P111∂w=1.9461

    ∂CUVW∂u=0.946;∂CUVW∂v=−0.555;∂CUVW∂w=1.542

    ∂2CUVW∂u∂v=9.101;∂2CUVW∂u∂w=29.094;∂2CUVW∂v∂w=458.057


Finally, we have the trivariate Plackett copula density as follows:


cUVW=∂3CUVW∂u∂v∂w=8.412.


6.2.3 Estimation of Cross-Product Ratio (Copula Parameter) for the Trivariate Plackett Copula


Following the same procedure for the bivariate Plackett copula, the parameter for the trivariate Plackett copula may be estimated. For a trivariate sample of X = {xi1xi2xi3i = 1, …n}X=xi1xi2xi3i=1…n with ui1 = F1(xi1), ui2 = F2(xi2), ui3 = F3(xi3),ui1=F1xi1,ui2=F2xi2,ui3=F3xi3, we can then write the pseudo-MLE as follows:


LθUVW=∑i=1nlogcUVWui1ui2ui3θUVW(6.27)

Taking the derivative with respect to θUVWθUVW and setting the derivative equal to 0, we have the following:


1n∂L∂θUVW=1n∑i=1n∂logcUVWui1ui2ui3θUVW∂θUVW=0(6.27a)

As shown in the previous section, the trivariate Plackett copula does not have an analytical form of the trivariate Plackett copula density function, and the parameter may be optimized by the numerical scheme (e.g., central differencing). Compared to the bivariate case, the parameter estimation of the trivariate Plackett copula is more tedious. It holds true, compared to the asymmetric Archimedean, vine, and meta-elliptical copulas.



6.3 Summary


In this chapter, we introduce the bivariate and trivariate Plackett copulas with the focus on the bivariate Plackett copula. The parameter estimation for the trivariate Plackett copulas is rather complex, compared to the trivariate asymmetric Archimedean, vine, and meta-elliptical copulas. Additionally, there does not exist the analytical form for the trivariate Plackett copula density. In general, it is recommended to apply asymmetric Archimedean, vine, and meta-elliptical copulas to model the multivariate dimensional dependence.




References


Joe, H. (1997). Multivariate Models and Dependence Concept. Chapman & Hall, New York.

Kao, S. C. and Govindaraju, R. S. (2008). Trivarariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2), W02415, doi:10.1029/2007WR006261.

Palaro, H. P. and Hotta L. K. (2006). Using conditional copula to estimate Value at Risk. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=818884.

Plackett, R. L. (1965). A class of bivariate distributions. Journal of the American Statistical Association, 60, 516522.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 470–472.

Song, S. and Singh, V. P. (2010). Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24, 783805, doi:10.1007/s00477–010–0364–5.

Oct 12, 2020 | Posted by in Water and Sewage | Comments Off on 6 – Plackett Copula
Premium Wordpress Themes by UFO Themes